Results of ElectroCore® Pilot Testing at E.C. Gaston Steam Plant

Bruce H. Easom – LSR Technologies, Inc. Ralph Altman – Electric Power Research Institute Wallace Harrison – Southern Company Services, Inc.

Background

- ElectroCore electrostatic particle separator
- Retrofit technology for underperforming ESPs
- Developed to separate high resistivity fly ash
 - Separate particle precharger and separator
 - Temperature controlled precharger: Allows high current densities
 - ElectroCore electrostatic separator: No corona so essentially zero current density

Separator Concept

Diameter

~ 40 cm (16 in)

Height

~ 3.0 m (10 ft)

Flow Rate

 $\sim 0.23 \text{ m}^3/\text{s} (500 \text{ acfm})$

11 September 2002

LSR Technologies, Inc.

ElectroCore Prototype – 2.8 m³/s (6,000 acfm)

ElectroCore

Precharger

Field Prototype Flow Schematic

Results by Concentration

Results by Emission Rate

Conclusions

- 12x scale-up demonstrated
- Optimum performance occurs at moderate separator electrode voltages
- Efficiency increases with increasing inlet loading
- Emission rates < 0.005 lb_m/million Btu achieved
- Can achieve 0.03 lb_m/million Btu for plants currently <0.4 lb_m/million Btu
- Total mercury capture about 90% at 7 lbm of activated carbon per million ft³ of gas